Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488476

ABSTRACT

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Epitopes/chemistry , Glycosides/chemistry , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , COVID-19/metabolism , Computer Simulation , Cytokines/metabolism , Flavanones/chemistry , Glucosides/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Saponins/chemistry , Spike Glycoprotein, Coronavirus/chemistry
2.
Molecules ; 25(17)2020 Aug 22.
Article in English | MEDLINE | ID: covidwho-727433

ABSTRACT

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cathepsin L/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Receptors, Virus/chemistry , Serine Endopeptidases/chemistry , Amino Acid Sequence , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Cathepsin L/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Gene Expression , High-Throughput Screening Assays , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , India , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Monosaccharides/pharmacology , Pandemics , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinazolines/chemistry , Quinazolines/isolation & purification , Quinazolines/pharmacology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Thermodynamics , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL